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Part	1:	Kokkos’	Back-ends
§ Map	algorithms	and	arrays	to	underlying	NGP	node	architecture

§ Productive,	performance-portable	abstractions	/	programming	model
§ Map	onto	architecture’s	best	programming	mechanism:	CUDA,	OpenMP,	...
§ Abstractions	and	programming	mechanisms	are	evolving

Part	2:	Kokkos’	Task-DAG	Pattern/Policy
§ Previously	only	data	parallel	patterns	/	policies

§ parallel_for,	parallel_reduce,	parallel_scan patterns	over	range	policy	[0..N)
§ Optional	hierarchical	thread	team	policy	to	maximize	available	parallelism

§ New	directed	acyclic	graph	of	tasks	parallel	patterns	/	policies
§ Tasks:	Can	be	heterogeneous collection	of	parallel	computations
§ DAG:	Tasks	may	have	acyclic	execute-after	dependences
§ Dynamic:	Tasks	can	be	spawned	within	executing	tasks
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FY17-18	evolution	of	Kokkos’	Back-ends

§ OpenMP for	CPU	and	KNL+
§ Require	OpenMP 4+	for	proper	granularity	of	thread-binding
§ Compatibility	/	interoperability	with	nested	parallel	regions

§ Continue	optional	use	of	hwloc to	choose	performant	sizes	for	nesting
§ Leverage	matured	OpenMP 4+	features

§ Scheduling,	loop	collapse,	customized	reductions,	...
§ Strategy	for	performant	AMT	/	Kokkos	/	OpenMP interoperability

§ Outcome	of	collaboration	with	U-Utah’s	“Uintah”	framework

§ CUDA	9+	for	NVIDIA	GPU
§ Proper	collectives	and	controls	provided	by	CUDA	thread	groups

§ Address	warp	divergence	bug
§ Sub-block	thread	teams	to	improve	flexibility	of	hierarchical	parallelism

§ Best	realized	on	Volta	architecture
§ Full	host-device	lambda	capability	with	C++17	capture:	[=,*this]
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FY17-18	evolution	of	Kokkos’	Back-ends

§ C++11	std::thread	for	CPU	and	KNL+
§ Portability	to	OS/runtime	that	does	not	OpenMP (e.g.,	Windows)
§ Performance	comparison	with	OpenMP
§ Research	thread	synchronization	and	collectives,	runtimes

§ Backend	for	ARM	(CPU)
§ OS/runtime/compiler	stack?	tbd
§ Best	thread	parallel	mechanism:	OpenMP,	std::thread,	...?	tbd

§ ROCm for	AMD	GPU;	developed	by	AMD
§ OpenMP 4.5	offload	for	GPU
§ Clang-CUDA	for	GPU
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§ Pattern
§ Parallel	execution	of	computations	(tasks)
§ That	have	“execute	after”	dependences

§ Policy
§ Scheduling	ready	tasks
§ Updating	dependences	as	tasks	complete

§ Dynamic	and	Heterogeneous	Task-DAG
§ Manage	tasks’	lifecycle	– tasks	spawned	within	executing	tasks
§ Manage	tasks’	memory	– task	and	workspace	allocated/deallocated
§ Each	task	may	be	a	different	function	(C++	closure)

§ Static	and	Homogeneous	Work-DAG
§ Single	function,	similar	to	data	parallel	patterns
§ Predefined	DAG	of	”execute	after”	work	indices:	{	k	executes-after	{	i,	j,	...	}	}

Directed	Acyclic	Graph	(DAG)	of	Tasks
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Task-DAG	Motivating	Use	Cases
1. Multifrontal Cholesky	factorization	of	sparse matrix
§ Frontal	matrices	require	different	
sizes	of	workspace	(green)	for	sub-assembly

§ Hybrid	task	parallelism:	tree-parallel	&	
matrix-parallel	within	supernodes (brown)

§ Dynamic	task-dag	with	memory	constraints
§ Matrix	computation	is	internally	data	parallel
§ Lead:	Kyungjoo	Kim	/	SNL

2. Triangle	enumeration	in	social	networks,	highly	irregular	graphs	
§ Discover	triangles	within	the	graph
§ Compute	statistics	on	those	triangles
§ Triangles	are	an	intermediate	result
that	do	not	need	to	be	saved	/	stored
Ø Challenge:	memory	“high	water	mark”

§ Lead:	Michael	Wolf	/	SNL
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Work-DAG	Motivating	Use	Case
§ Neutral	Particle	Transport	via	Sweeps
§ Tycho2	mini-application	(https://github.com/lanl/tycho2)
§ “A	neutral	particle	transport	mini-app	to	study	performance	of	sweeps	on	
unstructured,	3D	tetrahedral	meshes.”

§ Lead:	Kris	Garrett	/	LANL

§ Tycho2	version	using	Kokkos	Work-DAG
§ All	angle	sweeps	through	unstructured	mesh	in	a	single	DAG
§ Work	index:	K	=	angle_index *	number_elements +	element_index
§ Angle	sweeps	define	work	“execute	after”	dependences
§ Running	on	CPU	and	KNL	- as	of	July	27,	2017
§ Next	steps:	

§ Port	data	structures	to	Kokkos	for	performance	portability	to	GPU
§ Performance	evaluation	and	improvements



parallel_for

parallel_reduce

8

Hierarchical,	Thread	Team	Parallelism
§ Shared	functionality	with	hierarchical	data-data	parallelism

§ The	same kernel	(task)	executed	on	…
§ OpenMP:	League	of	Teams	of	Threads
§ Cuda:								Grid						of	Blocks	of	Threads

§ Inter-Team	Parallelism	(data	or	task)
§ Threads	within a	team	execute	concurrently	
§ Data:	each	team	executes	the	same	computation
ØTask:	each	team	executes	a	different	task

§ Intra-Team	Parallelism	(data)
§ Nested	parallel	patterns:	for,	reduce,	scan

§ Mapping	teams	onto	hardware
§ CPU	:	team	==	hyperthreads sharing	L1	cache’
§ GPU	:	team	==	warp,	for	a	modest	degree	of	intra-team	data	parallelism
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Dynamic	Task	DAG	Challenges
§ A	Dynamic	DAG	of	Heterogeneous	Functions	(closures)
§ Map	functions	onto	a	single	thread	or a	thread	team	
§ Scalable dynamic	allocation	/	deallocation	of	tasks
§ Scalable and	low	latency	scheduling
§ Scalable dynamic	creation	/	completion	of	execute-after	dependences

§ GPU	idiosyncrasies	/	constraints
ØNon-blocking	tasks,	forced	a	beneficial	“respawn”	reconceptualization!		

§ Eliminate	context	switching	overhead:	stack,	registers,	...
§ Heterogeneous	function	pointers	(CPU,	GPU)
§ Creating	GPU	tasks	on	the	host	andwithin	tasks	executing	on	the	GPU
§ Bounded	memory	pool	and	scalable	allocation/deallocation
§ Non-coherent	L1	caches
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Scalable	Memory	Pool	and	Task	Scheduler	
§ Memory	Pool
§ Lock-free	and	low	latency	via	atomic	operations
§ Large	chunk	of	memory	allocated	in	Kokkos	memory	space
§ From	which	smaller	blocks	are	allocated	and	deallocated

§ Task	Scheduler
§ Memory	pool	for	tasks’	dynamic	memory
§ Multiple	prioritized	ready	queues
§ Per-task	execute-after	waiting	queues
Ø Each	queue	is	a	simple	linked	list	of	tasks

§ Lock	free	push/pop	via	atomic	operations
§ Explicitly	manage	GPU	non-coherent	L1	cache

§ Problem:	dynamic	allocation/deallocation	across	GPU	processors	not	automically
observed	by	GPU	L1	cache	hardware

§ Solution:	explicitly	manage	via	GPU	programmable	L1	cache,	a.k.a.	__shared__
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Memory	Pool	Performance
§ Test	Setup
§ 10Mb	pool	comprised	of	153	x	64k	superblocks,	min	block	size	32	bytes
§ Allocations	ranging	between	32	and	128	bytes;	average	80	bytes
§ [1]	Allocate	to	N%	;		[2]	cyclically	deallocate	&	allocate	between	N	and	2/3	N
§ parallel_for:	every	index	allocates	;		cyclically	deallocates	&	allocates
§ Measure	allocate	+	deallocate	operations	/	second	(best	of	10	trials)

§ Deallocate	much	simpler	and	fewer	operations	than	allocate

§ Test	Hardware:	Pascal,	Broadwell,	Knights	Landing
§ Fully	subscribe	cores
§ Every	thread	within	every	warp	allocates	&	deallocates

§ For	reference,	an	“apples	to	oranges”	comparison
§ CUDA	malloc /	free	on	Pascal
§ jemalloc on	Knights	Landing
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Memory	Pool	Performance

§ Memory	pools	have	finite	size	with	well-bounded	scope
§ Algorithms’	and	data	structures’	memory	pools	do	not	pollute	(fragment)	
each	other’s	memory

Fill 75% Fill 95% Cycle 75% Cycle 95%
blocks: 938,500 1,187,500

Pascal 79 M/s 74 M/s 287 M/s 244 M/s
Broadwell 13 M/s 13 M/s 46 M/s 49 M/s
Knights Landing 5.8 M/s 5.8 M/s 40 M/s 43 M/s

apples to oranges comparison:
Pascal
using CUDA malloc

3.5 M/s 2.9 M/s 15 M/s 12 M/s

Knights Landing
using jemalloc

379 M/s 4115 M/s
thread local caches, optimal blocking, NOT fixed pool size
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Scheduler	Unit	Test	Performance

§ (silly)	Fibonacci	task-dag	algorithm	measures	overhead
§ F(k)	=	F(k-1)	+	F(k-2)
§ F(k)	cumulatively	allocates/deallocates	N	tasks >>	“high	water	mark”
§ 1Mb	pool	comprised	of	31	x	32k	superblocks,	min	block	size	32	bytes
§ Fully	subscribe	cores;	single	thread	Fibonacci	task	consumes	entire	GPU	warp

§ Real	algorithms’	tasks	have	modest	internal	parallelism
§ Measure	tasks	/	second;	compare	to	raw	allocate	+	deallocate	performance

F(21) F(23) Alloc/Dealloc
cumulative tasks: 53131 139102 (for comparison)

Pascal 1.2 M/s 1.3 M/s 144 M/s
Broadwell 0.98 M/s 1.1 M/s 24 M/s
Knights Landing 0.30 M/s 0.31 M/s 21 M/s
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Tacho’s Sparse	Cholesky Factorization
§ Multifrontal algorithm	with	bounded	memory	constraint
§ Kokkos	task	DAG	+	Kokkos	memory	pool	for	shared	scratch	memory
§ Task	fails	allocation	=>	respawn	to	try	again	after	other	tasks	deallocate
§ Test	setup:	scratch	memory	size	=	M	*	sparse	matrix	supernode size
§ Compare	to	Intel’s	pardiso,	sparse	matrix	N=57k,	NNZ=383k,	6662	supernodes
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Summary
§ Initial	Task-DAG	capability
§ Portable:	CPU	and	GPU	architectures
§ Dynamic	DAG	of	heterogeneous	tasks
§ Hierarchical	– thread-team	data	parallelism	within	tasks
§ Evaluation/improvement	underway	via	sparse	matrix	factorization	mini-app

§ Initial	Work-DAG	capability
§ Portable:	CPU	and	GPU	architectures
§ Static	DAG	of	work	indices	for	single	work	function
§ Evaluation/improvement	underway	via	sweep	particle	transport	mini-app

§ Challenges	conquered,	esp.	for	GPU	portability	and	performance
§ Non-blocking	(non-waiting)	tasks	è new	respawn	pattern
§ Lock	free,	scalable	memory	pool	and	scheduler
§ GPU	__shared__	memory	to	address	non-coherent	L1	cache


